Coordination of Robotic Teams for Assembly of Space Structures

Sanjiv Singh, Reid Simmons, Red Whittaker, David Wettergreen

Robotics Institute Carnegie Mellon University

Motivation for Robotic Operations

- Large structures
 - Millions of manipulations
 - Million kilometers traverse
- Long duration operations
 - Months of construction
 - Decades of maintenance
- Hazards
 - Temperatures
 - Kilovolts
 - Microwave Radiation
- Orbits inaccessible for humans
- Time value of assembly

Previous Work

- Prototype Robot for Assembly, Inspection and Maintenance (AIM)
 - Developed SKYWORKER, a robot prototype for AIM tasks
 - Validated the use of structure walkers for orbital AIM
 - Developed dynamic simulation of robot, facility and tasks
 - Simulated SSP AIM relevant tasks using robotics
 - Auto-generate robot designs
- Coordinated Assembly with Heterogeneous Robots
 - Developed distributed robot architecture
 - Emphasis on tasks that cannot be done by one robot
 - Demonstrated three robot system performing docking operations

Robot Prototype: Skyworker

- Type
 - Attached Mobile Manipulator
- Task
 - Manipulation and transportation of payloads for assembly, inspection, and maintenance on space structures
- Configuration
 - Supports a continuous gait
 - Self Contained AIM prototype
 - Distributed control network

Continuous Gait

- Characteristic Gait
 - Continuous hand over hand biped gait with compensating superstructure motion allows payload to move at constant velocity
- Advantages
 - Walks Softly: Exerts minimal stress on structure
 - Consumes minimal energy

Robotic Workforce Analysis

- Model and compare robot classes
 - Free Flyers
 - Fixed Base Manipulators
 - Attached Mobile Robots (Skyworker-class)
- Model structures and elemental tasks
- Investigate viable workforce
 - Type of robots suitable for tasks
 - How many robot classes
 - How many of each class

Configuration Auto - Generation

- Given a task:
 - Creates 1000's of configurations
 - Genetic algorithm optimizes:
 - Dynamic and kinematic performance
 - Control complexity
 - Power consumption
- Generated 3 AMM configurations
 - Optimize for Mass, Speed and Energy

Coordinated Assembly: Motivating Scenarios

Mars Habitat Construction

Beam Emplacement and Structure Assembly

Technical Challenges: Architecture

- Coordination at campaign, control and task level
- Dynamic, distributed team formation
- Adjustable autonomy at control and task level
- Independent robot operation without accurate inter-robot calibration

Multi-Robot Tiered Architecture

Executive Level

- Task-Level Control
 - Hierarchical task decomposition
 - Explicit task synchronization
 - Execution monitoring and exception handling
 - Distributed execution
- Language for Specifying Task Constraints
 - Simple concepts expressible in simple terms
 - Syntax for task decomposition, temporal constraints, monitoring, exception handling
 - Superset of C++

Multi-Robot Synchronization

Enable agents to allocate and synchronize tasks;
 detect and handle each others exceptions

Task Trees

- Execution trace of hierarchical plans
 - created dynamically at run time
 - can be conditional and recursive
- Temporal constraints partially order tasks
- Hierarchical exception handlers

Multi-Robot Testbed

 $QuickTime^{TM}$ and a YUV420 codec decompressor are needed to see this picture.

Carnegie Mellon
SPACE ROBOTICS

Current Work

Developing coordinated assembly

Objectives:

- Enable heterogeneous multiple robots to coordinate in the performance of complex assembly tasks
- Enable flexible human-robot interaction during assembly to deal with unanticipated contingencies

Motivating Scenarios:

- Assemble multi-element, compliant structure
- Brace structure for strength
- Cable structure